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Introduction

■ Prediction of aeroacoustic noise important
➤ all new aircraft must meet noise certification requirements
➤ local noise standards can be even more stringent

➤ NASA noise reduction goal: reduce perceived noise levels by a factor
of two in 10 years

■ Several prediction methods available
➤ direct computation

– CFD based methods

– near field only

– best coupled with integral method for far-field prediction
➤ Acoustic Analogy (Ffowcs Williams–Hawkings Equation)

➤ Kirchhoff formula

■ Confusion over relationship between methods exists
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Comments on Inte gral Methods

■ Technology
➤ acoustic formulations and algorithms mature

– widely used for rotating blade noise prediction

– potentially useful for airframe noise, engine noise, etc.
➤ flow field computation feasible in many cases

– required for input data

– provided by CFD
➤ high quality experiments aid validation

■ This talk will demonstrate the superiority of the FW–H approach
over the Kirchhoff method for aeroacoustics

➤ analytically

➤ numerically
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Advanta ges and Disadvanta ges

■ FW–H method
+ three source terms (thickness, loading, quadrupole) have physical

meaning

+ three source terms are independent
+ mature and robust algorithms

-  quadrupole source is a volume source (more computational resources
needed when volume integration included)

■ Kirchhoff method
+ surface sources (only surface integration required)

+ applicable to problems described by the wave equation
-  source terms not easily related to flow physics or design parameters

-  not as much experience with algorithms for Kirchhoff problems

■ Analytical/Numerical comparison needed
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Anal ytical Com parison:
FW–H Derivation Procedure

■ Embed exterior flow problem in
unbounded space

➤ define generalized functions
valid throughout entire space

➤ interpret derivatives as
generalized differentiation

■ Generalized conservation
equations:
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Anal ytical Com parison:
FW–H Derivation Procedure

■ Manipulate conservation laws into form of inhomogeneous wave
equation

■ Don’t assume integration surface f=0 is coincident with body
➤ given in this form by Ffowcs Williams

➤ demonstrated for rotors by di Francescantonio; Brentner & Farassat
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Anal ytical Com parison:
Kirchhoff Derivation Procedure

■ Use embedding procedure on wave equation
➤ define generalized pressure perturbation:

➤ use generalized derivatives

➤ generalized wave equation is Kirchhoff governing equation:
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Source Term Com parison

■ Manipulate FW–H source terms into form of Kirchhoff source
terms (inviscid fluid)

■ Extra source terms are 2nd order in perturbations quantities
■ FW–H and Kirchhoff source terms

➤ equivalent in linear region

➤ NOT equivalent in nonlinear flow region
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Integral Formulation of FW–H e quation

■ New variables put FW–H equation into standard form

hence

■ Integral representation of solution (formulation 1A)
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Kirchhoff Formulation for Movin g surfaces

■ Kirchhoff integral formulation

where
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Numerical Com parison

■ Kirchhoff code (RKIR)
➤ numerical implementation of Kirchhoff integration
➤ code developed for helicopter rotors (Purdue/Sikorsky/NASA LaRC)

■ Prototype code developed (FW–H/RKIR)
➤ based on RKIR (Rotating Kirchhoff code - rotor noise prediction)
➤ utilizes Farassat’s formulation 1A

➤ quadrupole source neglected; could be included

■ Cases for comparison
➤ hovering rotor

➤ rotor in forward flight
➤ viscous flow over a circular cylinder
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Numerical Comparison: UH-1H hovering rotor

■ UH-1H rotor
➤ 1/7th scale model

➤ untwisted blade

■ Test setup (Purcell)
➤ Hover, MH = 0.88

➤ inplane microphone,  3.09 R
from hub

■ Flow-field computation
➤ full potential flow solver used

(FPRBVI)

➤ 80 x 36 x 24 grid (somewhat
coarse)
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Numerical Com parison: 
Sensitivit y to Surface Placement

■ A principal advantage of the FW–H approach is insensitivity to
surface placement

Kirchhoff FW–H
(Note difference in pressure scales)
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Identification of Noise Com ponents

■ Compare components from off
FW–H/RKIR with WOPWOP+

➤ UH-1H rotor in hover

➤ Hover solution from TURNS
(Baeder)

■ Two predictions necessary with
FW–H/RKIR

➤ thickness and loading from
surface coincident with rotor
blade

➤ total signal from a surface
approximately 1.5 chords away
from blade.

■ New application of FW–H
equation retains advantage of
predicting noise components
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Numerical Com parison: Forward Fli ght Case

■ Test setup (Schmitz et al.)
➤ Operational Loads Survey (OLS)

1/7 scale model rotor

➤ 3 inplane microphone used for
comparison

■ Operating conditions
➤ MAT = 0.84

➤ µ = 0.27

■ Flow-field computation
➤ flow solver: full potential  code

for rotors (FPRBVI)

➤ 80 x 36x 24 grid
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Numerical Com parison: Forward Fli ght Case

■ Advancing-side acoustic pressure
underpredicted

■ Agreement with data is good

■ All three codes agree with each
other
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Numerical Com parison: Circular C ylinder Flow

■ Problem:
➤ Viscous flow over a circular cylinder
➤ 2D, unsteady laminar CFD computation, Re = 1000.

➤ Acoustic calculation 3D, cylinder 40 dia long

Vorticity field
from N-S computation

CFD grid 193x97

grid extends out 20 dia.
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Noise Generated b y Flow Over C ylinder

■ Location 128 dia from cylinder, 90 deg from freestream

■ FW-H predictions show small sensitivity to surface placement
■ Kirchhoff predictions meaningless
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Noise Generated b y Flow Over C ylinder

■ Location 128 dia from cylinder, downstream

■ differences in FW-H prediction due to:
➤ CFD inaccuracy                  ➤  Increased integration error (grid size)
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Conclusions

■ FW–H method of choice for aeroacoustic problems
➤ conservation of mass and momentum built in
➤ unified theory with thickness, loading, and quadrupole source terms

➤ insensitive to integration surface placement

■ FW–H approach the “better” than linear Kirchhoff because:
➤ valid in linear and nonlinear flow regions

➤ surface terms include quadrupole contribution enclosed

➤ physical noise components can be identified with two surfaces

■ The Kirchhoff approach
➤ valid only in the linear flow region (not known a priori)

– input data must satisfy the wave equation

– wakes and potential flow field can cause major problems
➤ solution can be sensitive to placement of Kirchhoff surface


